
The Answer to a Question:

How to set up Primary Keys in a Relation?
from Umbra Æternitatis on StackOverflow exceeded the limits of an answer (StackOverflow is intended for
quick answers to simple questions, and database questions and answers tend to be long, as they involve
explanations).
This document contains the full answer, rather than breaking it up at the limit.
The answer follows the chronology of the question, and the updates to it. Unfortunately that results in section
pertaining to one subject being located in more than one place. Hopefully, that does not interrupt the flow.

A Preliminary

Position
Any practice that is not based on solid theory is not worthy of consideration. I am a strict Relational Model
practitioner, with a strong grounding in the theory. The Relational Model is based on solid theory, and has never
been refuted 1. There is nothing solid in what passes for "relational theory", I have taken them on, and refuted
their notions in their space. Further, Relational Database design is a science, not magic, not art 2, therefore I can
provide evidence for any of the propositions or charges that I make. My answers are from that position.

"Relational Theory"
 I wish to know how to correctly set up Primary Keys in a Relation. E.g. we have ER-diagram which contain

elements:
If it was an ERD, then you wouldn't be looking at "relations", you would be looking at entities (if the diagram
was early) or tables (if it were progressed). "Relations" are a wonderful abstraction which have nothing to do
with an implementation. An ERD or a Data Model means an implementation (non-abstract, real) is intended,
the intention to the physical leaves the abstract world of theory behind, and enters the physical world, where
idiotic abstractions get destroyed.
Further the "theoreticians" who allege to be serving the database space cannot differentiate between base
relations and derived relations: while that might be acceptable in the abstract context, it is dead wrong in the
implementation context. Eg. base relations are tables, and they need to be Normalised; derived relations are,
well, derived, views, of base relations, which by definition are flattened views (not "denormalised", which
means something slightly different) of base relations. As such, they need not be Normalised.
• But the "theoreticians" try to "normalise" derived relations. And the most damaged two are trying to have

the definition of 1NF, that we have had for forty five years, that is fundamental and rock solid, that they
themselves have supported, changed, so that their derived relations, which do not need "normalisation", can
be classified as "normalised". It would be hilarious if it were not so sad.

Objective Truth

One marvellous quality of objective truth, of science, is that it does not change, it is permanent. It can be relied
upon, it must be understood before a practical exercise is undertaken.
Subjective "truth", non-science, changes all the time. It is not worth the reading.

Umbra Æternitatis’ StackOverflow Question 14 Jun 15
PerformanceDBA’s Answer Page 1 of 25

1 The are non-science articles, and masses of opinions from those who do not understand the science, yes, but no
scientific refutation. Much like pygmies arguing that man cannot fly, it is "true" for them, but not true for mankind, it is
based on a complete inability to understand the principle of flight.

2 There is some art in the presentations of high-end practitioners, yes, but that does not make the science an art. It is a
science, and only a science, and over and above that, it can be artfully delivered, in models and databases.

http://stackoverflow.com/a/30803947/484814
http://stackoverflow.com/a/30803947/484814
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/users/484814/
http://stackoverflow.com/users/484814/

Isolation

They live in a world of their own, isolated from the reality of Relational Databases, specifically the Relational
Model, and the industry that they allege to serve. In forty five years since the Relational Model came out, they
have done nothing to progress the Relational Model or Relational databases.
• Mind you, they have been progressing all sorts of notions, which are outside the Relational Model.
• The progress of the Relational Model (completion of what the Neanderthals suggest was "incomplete") has

happened solely due to the standardisation (R Brown and others working with Codd, resulting in the
IDEF1X Standard for Modelling Relational Databases), and the efforts of high-end SQL vendors and their
customers.

• That is the commercial RDBMS vendors, who were already established in the 1980's, not the Non-sql
freeware/shareware/vapourware groups of the last decade, who pass off their wares as "sql", which gets you
good and glued to their "platform", through non-portable code.

The worst part is, they publish books about their non-relational concepts, and fraudulently label them as
"relational". And "professors" blindly "teach" this nonsense, like parrots, without ever understanding either the
nonsense, or the Relational Model that it is supposed to explore.
• If you are trying to find answers to some "educational" project, sorry, I cannot provide that, because the

"education", as you can see, is totally confused, and has non-relational requirements.
• I can however, provide direct answers to the question, governed by science, the Relational Model, the laws

of physics, etc.
The point to take from this is, while Relational Theory and Practice were very close after Dr E F Codd
published his seminal work, and during the time that the SQL Platforms were developed by the vendors, in the
post-Codd era, what passes for "relational theory" is completely divorced from that original Relational Theory.
• I can enumerate the differences, but not here. Note that if you read my posts that touch on this subject, you

can gather those particulars, and enumerate them yourself. Or else ask a new question.

14 Jun 15 Umbra Æternitatis’ StackOverflow Question
Page 2 of 25 PerformanceDBA’s Answer

http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/users/484814/
http://stackoverflow.com/users/484814/

B The Question
 I wish to know how to correctly set up Primary Keys in a Relation. E.g. we have ER-diagram which contain

elements:
There is no ERD to examine. Ok, in the Update you have an example. Perfect for your questions, because it is
a set of user views of the data, and the modelling can now begin. But note, that is not an ERD or a Model. We
rely on understanding the data; analysing it; classifying it, not on looking at the data values with a microscope.
I realise that that is what you have been taught to do.

 In order to translate it into Relational Model
Yes, that is the stated goal. The word "translate" is incorrect, because the Relational Model is not merely a flat
or fixed set of criteria that one "satisfies" or fits into (as it is known to the "theoreticians"), it also provides
specific Methods and Rules. Therefore, we will be Modelling, according to the Relational Model.
 we should do some tricks.
We don't need tricks, we use science, and only science. The "theoreticians" and the "professors" who follow
them, need tricks, and practice non-science. I can't help in that regard. Further, the tricks they use, are usually
to circumvent and subvert the Relational Model, so watch out for them.

Umbra Æternitatis’ StackOverflow Question 14 Jun 15
PerformanceDBA’s Answer Page 3 of 25

http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/users/484814/
http://stackoverflow.com/users/484814/

B.1 Surrogate
 All elements above deal with Primary Keys of relations but they all are Natural Keys - so we can leave them

as is or replace with Surrogate Keys.
Well, there it is, your "teacher's" first trick is exposed.
1. Surrogates are physical Record (not row) pointers, they are not logical.
2. There is no such thing as a "surrogate key", the two words contradict each other.

• A Key has a specific definition in the Relational Model, it has to be made up from the data. A surrogate
isn't made up from the data, it is manufactured, a meaningless number generated by the system.
Therefore it is not a Key or a "key".

• A Key in the Relational Model has has a number of Relational qualities, which makes Keys very
powerful. Since a surrogate is not a Key, it does not have any of those qualities, it has no Relational
power.

• Therefore, "surrogate" and Key each have specific meanings, and they are quite fine as separate terms,
but together, they are self-contradictory, because they are opposites.

• When people use them term "surrogate key", they naturally expect some, if not all, the qualities of a Key.
But they will not obtain any of them. Therefore they are defrauded.

3. The Relational Model (the one that the theoreticians know nothing about) has a specific Access Path
Independence Rule. As long as Relational Keys are used, this rule is maintained. It provides Relational
Integrity 3.
• The use of a surrogate violates this rule. The consequence 4 is, Relational Integrity and Relational

Navigation 5 are both lost.
• The consequence of that is, many more joins are required to get at the same data (not less, as the lovers of

mythology and magic keep parroting).
• Therefore surrogates are not permitted, on another, separate count.

4. Since you are in the modelling stage, either conceptual or logical, and Keys are Logical, and surrogates are
physical, surrogates should not come into the picture. (They come into the picture, if at all, for
consideration, only when the logical model is complete, and the physical model is being considered.) You
are nowhere near completion of the Logical, so the introduction of a surrogate should raise a red flag.

 The "teacher", and the author of the "textbook" that he is using, are frauds, on two separate counts:
• They are introducing a physical field, into the Logical exercise, which should not concern itself with

physical aspects of the database.
• But in so doing, the effect they have is that they establish the surrogate, the physical thing, as a logical

thing. Thus they poison the mind.
There, straight science, pure logic, uncontaminated by insane thinking, and thus immune to the frauds. No
surrogates at the Logical stage.
So the final answer to your question:
 All elements above deal with Primary Keys of relations but they all are Natural Keys - so we can leave them

as is or replace with Surrogate Key s.
In the conceptual and logical exercise, we deal with Logical Keys only. Physical concepts such as a surrogate
are illegal. The replacement of a Logical Key with a physical creature, in the Logical exercise is rejected. Use
the Keys you have, which are from the data, and natural.

14 Jun 15 Umbra Æternitatis’ StackOverflow Question
Page 4 of 25 PerformanceDBA’s Answer

3 Relational Integrity (which the Relational Model provides) is distinctly different to Referential Integrity (which SQL
provides, and Record Filing Systems might have). If you do not understand this, please open a new question "What is
the difference ..." and ping me

4 Breaking any rule has always has undesirable consequences, beyond the act itself.
5 If you do not understand this, please open a new question "What is the Relational Navigation ..." and ping me.

http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/users/484814/
http://stackoverflow.com/users/484814/

B.2 Surrogate is Not a "Replacement"
There is one more point. The term "replacement" is incorrect. A surrogate is never a replacement or substitute
for a Natural Key.
• One of the many qualities that a natural Key provides, is row uniqueness, and that too, is demanded in the

Relational Model, duplicate rows are not permitted.
• Since a surrogate is not a Key to a row (it is a physical pointer to a record), it cannot provide the required

row uniqueness. If you do not fully understand what I am saying, please read this Answer, from the top to
False Teachers. Do test the given code exercises.

• Therefore, a surrogate, even if considered, at the physical modelling stage, is always an additional column
and index. It is not a replacement for a natural Relational Key.

• And conversely, if the surrogate is implemented as a replacement, the consequence is duplicate rows, a non-
relational file, not a Relational table.

Umbra Æternitatis’ StackOverflow Question 14 Jun 15
PerformanceDBA’s Answer Page 5 of 25

http://stackoverflow.com/a/29726132/484814
http://stackoverflow.com/a/29726132/484814
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/users/484814/
http://stackoverflow.com/users/484814/

B.3 Case

Case 1
 Key Attribute is a name - so it must be of type CHAR or VARCHAR. Generally names become Key

Attributes.
Yes.
Often they are codes (users do use codes). Often Codes jump out at you (you have a very good example in your
One More Update). { D | R | B } would do just as well { < | ^ | > }. This is of course towards the end
of the logical model stage, when the model is stable, and one is finalising the Keys and optimising them. For
any stage earlier than that, the wide Natural Keys stand.
The idea is to keep it meaningful.
• Keys have meaning (surrogates have no meaning). One of the qualities of a Relational Key is, that that

meaning is carried, wherever the Key is migrated as a Foreign Key.
• And as per your example, wherever it is used. Including program code. Writing:

IF CrewType = "Backup" -- meaningful but fixes a value
IF CrewType = 1 -- meaningless

is just plain wrong. Because (a) that is not really a Key, and (b) the user may well change the value of that
datum from Backup to Reserve, etc. Never write code that addresses a data value, a descriptor. So the fact is,
Backup is the projection of the Key, the exposition, and the Code is the actual Key. That resolves to
CrewType.Name, and the Key is CrewTypeCode.

IF CrewTypeCode = "B" -- Key, meaningful, not fixed

While we are on Keys, please note:
1. In the Relational Model, we have Primary Keys, Alternate Keys, and Foreign Keys (migrated Primary Keys).
2. We do not have "candidate keys", no such thing is defined in the Relational Model. It is something

manufactured outside the Relational Model. It is therefore non-relational.
 Worse, they are used by people who implement surrogates as "primary keys" 6.
3. A physical consideration 7 , but one that should be understood and applied throughout the exercise. When the

data is understood and known, the columns will be fixed length. When they are unknown, they might be
variable. For Keys, given that they will be indexed, at least on the Primary side, they should never be
variable, because that requires unpacking on every access.

Magicians rely on their tricks, to make bunny rabbits look like lions. Scientists do not need them.

14 Jun 15 Umbra Æternitatis’ StackOverflow Question
Page 6 of 25 PerformanceDBA’s Answer

6 The use the SQL keyword PRIMARY KEY does not magically transform a surrogate into a PK. If one follows the
Relational Model, one (a) determines the possible Keys (no surrogates), and then (b) chooses one as Primary, which (c)
means the election is over, therefore (d) the nominated candidates can no longer be called "candidates", the event is
history, therefore (e) the remainder, the non-primary Keys, are Alternate Keys.

 "Candidate key" is a refusal to conform to the Relational Model and nominate a PK, therefore, in and of itself, it is non-
relational. Separate to the fact that they have a surrogate as "primary key", which is a second non-relational item.

7 For those non-technical people who believe that no technical knowledge and foresight, no physical considerations at all,
should be evaluated during the logical, that's fine, evaluate them at the physical. Since I am not addressing the physical
here, I am just making a note for Umbra.

http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/users/484814/
http://stackoverflow.com/users/484814/

Case 2
 Two (or more) Identifying Relationships become a Composite Primary Key of a relation (which is made of

Foreign Keys).
I think you have the right idea, but the wording is incorrect for the generic case.
• That wording is correct for an Associative Table, which has two Foreign Keys. Yes, in that case, the two

FKs form the PK, which is all that is needed for row uniqueness. Nothing can better that. The addition of a
Record ID is superfluous.

• For the generic case, for any table:
• An Identifying Relationship¹ causes the FK (migrated parent PK) to be part of the PK in

the child. Hence the name, the parent Identifies the child.
• That makes the child a Dependent¹ table, meaning that the child rows can exist only in the

context of a parent row. Such tables form the intermediate and leaf nodes in the Data Hierarchies, they
are the majority of tables in a Relational database.

• If the row can exist independently, the table is Independent¹. Such tables form the top of
each Data Hierarchy, there are very few in a Relational database.

• A Non-identifying Relationship 8 is one where the FK (migrated parent PK), is not used to form the child
PK.

• Compound or Composite Keys are simply made up of more than one column, they are standard fare in
Relational databases. Every table except the top of each Data Hierarchy will have a Compound Key. If
you do not have any, the database is not Relational.

Please read my IDEF1X Introductioncarefully.

Case 3
 Identifying Relationship(s) with Weak Key Attribute(s) also become a Composite Primary Key.
The terms weak and strong, with or without a relationship to key is not defined in the Relational Model. It is a
fiction of the "theoreticians". Thus I cannot answer that question.
• I do note that some of the "theoretical" papers present strong Keys (normal English word, describing the fact

that the Key has been established previously) as "weak", and weak "keys" (normal English word, describing
the fact that the "key" has not been established previously) as "strong". Such is the nature of schizophrenia.

• Therefore I suspect that it is part and parcel of their evidenced attempt to confuse the science with non-
science, and to undermine the Relational Model. In the old days, when such people were locked up,
humanity was healthly. Now they write books and teach in colleges.

Case 4
 Associative entities usually have two or more Identifying Relationships
Yes. Two is correct.
If you have more than two, then that is not fully Normalised. Codd gives an explicit method to Normalise that,
such that there will be two (or more) Associative entities, of two exactly Identifying relationships each.
• "... therefore, all n-ary (more than two) relations ... can be ... and should be, resolved to binary (two)

relations."
(paraphrased for this context)

 so they are to be Junction Relations (Junction Tables).
No. "Junction" relations and "junction" tables are not defined in the Relational Model, therefore they are non-
relational.
Associative Entities in the logical become Associative Tables in the physical.

Umbra Æternitatis’ StackOverflow Question 14 Jun 15
PerformanceDBA’s Answer Page 7 of 25

8 The "theoreticians" do not differentiate Identifying vs Non-identifying, or Dependent vs Independent: all their files are
Independent; all their "relationships" between record pointers are Non-identifying. It is a regression to the pre-1970's
ISAM Record Filing Systems, devoid of Relational Integrity, power, and speed. Fraudulently labelled as "relational".
That is all they understand, that is all they can teach.

http://www.softwaregems.com.au/Documents/Documentary%20Examples/IDEF1X%20Introduction.pdf
http://www.softwaregems.com.au/Documents/Documentary%20Examples/IDEF1X%20Introduction.pdf
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/users/484814/
http://stackoverflow.com/users/484814/

B.4 Example
 How to set up Primary Keys for Relations in order to handle all above Cases (perhaps some more Cases

which I did not mention)?
 How to avoid using Surrogate Keys and in which Cases they're necessary?
 How to set up datatypes for Primary Keys?
 If a Composite Primary Key has to be passed into Child Relation, shall it be replaced with Surrogate?
Those questions are best handled using an example, and you have given one ...

Your Example

Now we can take up the example given in your Update to the question. First, a couple of preliminary issues.
1. The first basic error that you make, both in this and the other question, is that you look at the data, presented

in tabular form, and you treat that as a Table. As if that is already Normalised, and fixed.
• If you mark my words above re this issue, you can see that this is actually an error taught by your

"teachers", not something you have invented yourself. Namely, that they cannot tell the difference
between a derived relation (does not require Normalisation, because it is derived from base relations) and
a base relation (needs to be Normalised). And they are trying to instil that disability in your mind, such
that you are as crippled as they are.

• When the user (or in this case a dumb teacher, or the crippled author who wrote the textbook that he uses)
puts some data in front of you, they are not giving you a base relation, they are giving you their
perception of the data.

• It is your job, as the data modeller, to Normalise that data, and to Normalise that jumble of data, the result
of which is (a) base relations, that are implemented as tables, which do not look like their jumble, and (b)
derived relations, which are not base relations, tables, but can be derived directly from the base relations,
tables.

• Otherwise you will be implementing their jumble, not a database (let alone a Relational database).
 Therefore, the first task that is required for each of the three representations of data that you have given, is to

appreciate that they are perceptions of data, and to Normalise them into base relations.
2. The second basic error that you make, again evidently taught by your "teachers", is to focus on the data

values, rather than the analysis and classification of data.
• Data values are nice to know, good additional indicators that the classification is correct or incorrect, but

they are (a) secondary, and (b) come after the classification of data, (c) therefore the values are irrelevant
until the classification has been performed.

• Focussing on the data values is a method of avoiding the classification of data, which is essential to the
modelling exercise.

• The post-Codd authors and the teachers who use their books do not understand data classification, so they
cannot teach it, they focus on data values.

 Codd and I teach the classification of data first, and the verification of that (via data values) second.
 However, in this instance, since you have given data values only, and an user perception of that, I will use the

data values as given, much to my reluctance, and form the classifications as we progress.

14 Jun 15 Umbra Æternitatis’ StackOverflow Question
Page 8 of 25 PerformanceDBA’s Answer

http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/users/484814/
http://stackoverflow.com/users/484814/

C.1 Spaceship Normalisation
1. Initial
 Appreciate that the data given (falsely, in tabular from) is merely an user perception of the data, not a table,

and it needs Normalisation.
Perception of Spaceship Data

Soyuz TMA-14

Endeavour

Soyuz TMA-15M

Atlantis

Soyuz TM-31

Soyuz

Space Shuttle

Soyuz

Space Shuttle

Soyuz

ShipTypeShipName

 People who do not have that taught disability can differentiate between base and derived relations. In the
Standard for Modelling Relational Database, IDEF1X (which remarkably, the post-Codd authors are ignorant
of, and do not use), we have a diagrammatic difference: a dashed outline indicate a view, a derived relation.

 The evidence that it is not Normalised is, we can see that there are repeating groups for ShipType and
ShipName.

 ShipType - Foreign Key (but it is not being considered here)
 It should be, that is part of Normalisation.
2. Remove Repeating Group A
 We remove the repeating group in ShipType, we Normalise it into a reference table ShipType. One data

classification treated correctly.

Spaceship

Sz

Sh

Sz

Sh

Sz

ShipTypeCode ShipName

Soyuz TMA-14

Endeavour

Soyuz TMA-15M

Atlantis

Soyuz TM-31

Classifies

ShipType

Soyuz

Space Shuttle

Name

Sz

Sh

ShipTypeCode

 Notice, ShipType is now a table, the perception of data remains a derived relation, a view. Since we have
not yet determined what the relationship between ShipType and the Spaceship data is, at this stage it is
Non-identifying.

 Consistent with my IDEF1X Introduction, a bold outline indicates the Primary Key in the table, and bold
text indicates a Foreign Key. UML does not come close to representing the richness or precision that
IDEF1X affords.

Umbra Æternitatis’ StackOverflow Question 14 Jun 15
PerformanceDBA’s Answer Page 9 of 25

http://www.softwaregems.com.au/Documents/Documentary%20Examples/IDEF1X%20Introduction.pdf
http://www.softwaregems.com.au/Documents/Documentary%20Examples/IDEF1X%20Introduction.pdf
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/users/484814/
http://stackoverflow.com/users/484814/

3. Remove Repeating Group B
 We can see that there is another series of repeating data in ShipName, nicely jumbled with

LaunchVehicleName. Obviously LaunchVehicle is quite separate to ShipName, and it has no business being
located in ShipName.

 We remove the repeating group in ShipName, we Normalise it into a reference table LaunchVehicle. A
second data classification treated correctly.

ShipType LaunchVehicle

TMA-14

TMA-15M

TM-31

Outboard

Name

14

15

31

Ob

LaunchVehicleCode

Spaceship

ShipName

Soyuz

Endeavour

Soyuz

Atlantis

Soyuz

ShipTypeCode

Sz

Sh

Sz

Sh

Sz

14

Ob

15

Ob

31

LaunchVehicleCodePropelsClassifies

Soyuz

Space Shuttle

Name

Sz

Sh

ShipTypeCode

 We haven't addressed Spaceship directly, yet, so it remains a derived relation, a perception, and the
relationship is Non-identifying.

4. Finalise
 Now we can address Spaceship directly, the table required to store the Fact that a Spaceship exists.
 The Russians name their spaceships. But according to your description, which I assume is the assignment

requirement, they don't. Due to it being a requirement, although it is a contrived one, we will stick to the
latter. In which case, you are right, the Identifier for Spaceship is a Compound or Composite Key, made up
of three things, the two Foreign Keys, plus ShipName.

ShipType LaunchVehicle

TMA-14

TMA-15M

TM-31

Outboard

Name

14

15

31

Ob

LaunchVehicleCode

PropelsClassifies

Soyuz

Space Shuttle

Name

Sz

Sh

ShipTypeCode

Spaceship

ShipName

Soyuz

Endeavour

Soyuz

Atlantis

Soyuz

ShipTypeCode

Sz

Sh

Sz

Sh

Sz

14

Ob

15

Ob

31

LaunchVehicleCode

 Since the ShipType and LaunchVehicle Primary Keys are used to form the child Primary Key, they are now
Identifying Relationships.

 Surrogates. First, it is incorrect to consider such physical aspects in the logical model, but since you are
considering them, note that a surrogate here does not provide any benefit, it would be a superfluous addition.

14 Jun 15 Umbra Æternitatis’ StackOverflow Question
Page 10 of 25 PerformanceDBA’s Answer

http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/users/484814/
http://stackoverflow.com/users/484814/

5. Model the Data
 Now we have progressed to the point where it is worth creating a Logical Data Model.

Spaceship

Name
LaunchVehicleCode
ShipTypeCode

ShipType

Name
ShipTypeCode

LaunchVehicle

Name
LaunchVehicleCode

Classifes Propels

 Note that Identifying Relationships shows Dependency. A Spaceship does not exist independently; it exists
only in the context of (a) a ShipType, and (b) a LaunchVehicle. It is dependent on both.

6. Construct Predicate
 The model exposes the Predicates, and the Predicates are used to verify the Model. It is an important feed-

back loop, used during the modelling exercise. Therefore, I give the Predicates. The burdensome prefix
Each for every sentence is omitted.

LaunchVehicle is independent
	

 LaunchVehicle is identified by (LaunchVehicleCode)
	

 LaunchVehicle propels 0-to-n Spaceships
	

 LaunchVehicle is described by (Name)
ShipType is independent
	

 ShipType is identified by (ShipTypeCode)
	

 ShipType classifies 0-to-n Spaceships
	

 ShipType is described by (Name)
Spaceship is dependent on, and identified by, LaunchVehicle
	

 Spaceship is propelled by 1 LaunchVehicle
	

 Spaceship is dependent on, and identified by, ShipType
	

 Spaceship is classified by 1 ShipType
	

 Spaceship is identified by (ShipTypeCode, LaunchVehicleCode, Name)

 As you can see, they verify and confirm that the model is correct (against the requirements given). Note the
dependencies expressed in [5] are explicit Predicates.
6.1. Dr E F Codds Relational Model is based on First Order Predicate Calculus (commonly called First

Order Logic). Thus Predicates are fundamental to Relational Theory, and to the implementation of a
Relational Database.

6.2. Note that the post-Codd authors do not understand Relational Theory (they have their own ‘relational
theory”, which is non-relational, as detailed above). They do not understand Predicates, the
fundament of its nature. They only know about the most insignificant ones (eg.
SPACESHIP_IS_CALLED), and they shout those out, as if they were the only Predicates.
• Typically, they make ridiculous claims about what the Relational Model can, and cannot do, in

terms of semantics.
• All of which are patently false, since (if you understand [6.1]) there is nothing that cannot be stated

in terms of First Order Logic, There is no such thing as data that is so complex that it can’t be
declared in FOL.

• The claims therefore prove three things: that the claimants are clueless about the Relational Model;
clueless about FOL; and thus the claims are really a declaration of the claimants’ own intellectual
limitations. It has nothing to do with the Relational Model.

6.1. The Predicates can be read directly from an IDEF1X mode (but not from an UML or other funny
diagram).

6.2. But novices cannot read all the Predicates, everything that is relevant from an IDEF1X model. The
reason being that the post-Codd authors and the teachers who use their books are (a) ignorant of the
IDEF1X Standard, and (b) use funny diagrams that do not convey much meaning at all. Thus non-
models, which convey little, are commonly presented and used as "models".

Umbra Æternitatis’ StackOverflow Question 14 Jun 15
PerformanceDBA’s Answer Page 11 of 25

http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/users/484814/
http://stackoverflow.com/users/484814/

6.3. Therefore, when answering questions from novices, I provide all the relevant Predicates, that are
implemented in the model, explicitly. Except the insignificant ones, which are Descriptors, the
attributes that describe a Relational key, below the PK line, which are more than obvious.

6.4. In this instance, I provide the Descriptors as well. Hopefully, you can see the idiocy of Predicates
elevated to table names, such as SPACESHIP_IS_CALLED, vs the six Predicates regarding Spaceship,
given in order of importance.

• ShipType is independent, it exists on its own
• LaunchVehicle is independent, it exists on its own
• Spaceship is dependent, it exists only in the context of a ShipType and a LaunchVehicle
• Spaceship is an Associative table, the Primary Key is the combination of the Primary Keys of ShipType

and LaunchVehicle
7. Derived Relation, View
 Now we can prove the data model even further, by demonstrating that any and all derived Relations can be

projected from the base relations (tables, implemented).

Spaceship_View

Sz

Sh

Sz

Sh

Sz

Soyuz

Space Shuttle

Soyuz

Space Shuttle

Soyuz

ShipTypeCode

TMA-14

Outboard

TMA-15M

Outboard

TM-31

LaunchVehicleCode

Soyuz

Endeavour

Soyuz

Atlantis

Soyuz

ShipType

14

Ob

15

Ob

31

LaunchVehicle Name

 This is the Universal Relation for the three base relations, or tables.
8. Initial Perception is View
 Now we can evaluate the Initial Perception of the Spaceship Data, against the relevant columns in the

Universal Relation.

Inital Perception Normalised

Soyuz

Endeavour

Soyuz

Atlantis

Soyuz

Name

TMA-14

Outboard

TMA-15M

Outboard

TM-31

LaunchVehicle

Soyuz

Space Shuttle

Soyuz

Space Shuttle

Soyuz

ShipType

Soyuz TMA-14

Endeavour

Soyuz TMA-15M

Atlantis

Soyuz TM-31

Soyuz

Space Shuttle

Soyuz

Space Shuttle

Soyuz

ShipTypeShipName

 Of course, since we have Normalised the base relations, the data in the View is Normalised (but flattened, by
definition).
• Thus we prove that the data demanded by the user (or dumb teacher or schizophrenic author), presented

as a "table", is not such. It is merely the data as perceived by non-technical people, that technical people
must (a) differentiate base vs derived relations from, and (b) Normalise the base relations only.

• And we prove that the data demanded, is entirely possible, easy to project, from the Normalised base
relations.

14 Jun 15 Umbra Æternitatis’ StackOverflow Question
Page 12 of 25 PerformanceDBA’s Answer

http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/users/484814/
http://stackoverflow.com/users/484814/

C.2 Crew Normalisation
1. Initial
 Appreciate that the data given (falsely, in tabular from) is merely an user perception of the data, not a table,

and it needs Normalisation.
Perception of Crew Data
CallSign

Astreus

Altair

 The evidence that it is not Normalised, that it is not Relational is, there is no valid Identifier. The Relational
Model demands that the data can be Identified, in order to form row uniqueness. A CallSign that is optional
is not a valid Identifier.

2. Surrogate Fail
 Now it is obvious to me, that the "teacher" is attempting to force you into a position in which you have to use

a surrogate to identify the data, and thus validate the false notion that surrogates are valid.
 That is easily proved false, because (as you know from this Answer) surrogates do not provide the row

uniqueness demanded by the Relational Model.

Crew File

CallSign

Astreus

Altair

Altair

Altair

Astreus

CrewID

98765

98766

98767

54321

54322

54323

54324

 As evidenced in the example I have given, the surrogates provide unique Record IDs, woo hoo, but provide
no uniqueness in the data rows.

 Once again, the surrogate fails. It does not Identify the data, only data can Identify the data
 Once again, if used, the surrogate would be superfluous, providing nothing of value.
3. Add Identifying Element
 We need the data to Identify the data. An optional CallSign fails to Identify the data. While I would love to

stick to the assignment requirement, in this case we can't, because data given in the requirement is grossly
inadequate.

 We therefore must add elements to the data, such that we can uniquely Identify it, and differentiate each row
from other data rows.

 Now, in the real world, Crew is a subset of Person, and all Persons have a first and last name, which is
commonly used to Identify Persons. The idea of Crew, especially astronauts, who are famous, not having a
first and last name is not reasonable.

Demanded Crew Data

CallSign

Astreus

Altair

NameFirst

Albert

Brad

Charles

David

Eleanor

NameLast

Frederick

Mannheim

Durant

Fitzgerald

Norman

 Thus we add a NameLast and NameFirst to the perception of Crew data, in order to be able to Identify Crew,
and to provide uniqueness for each Crew data row.

Umbra Æternitatis’ StackOverflow Question 14 Jun 15
PerformanceDBA’s Answer Page 13 of 25

http://stackoverflow.com/a/29726132/484814
http://stackoverflow.com/a/29726132/484814
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/users/484814/
http://stackoverflow.com/users/484814/

4. Normalise the Data
 Retaining the contrivance that CallSign is optional, for the assignment, even though the notion of a Crew

member without one is absurd.

Crew

CallSign
Frederick

Mannheim

Durant

Fitzgerald

Norman

Albert

Brad

Charles

David

Eleanor

NameLast NameFirst

CallSign

Astreus

Altair

NameFirst

Brad

David

NameLast

Mannheim

Fitzgerald
Has

 The data is easily Normalised into a Crew table, and a CallSign table for the optional column.
5. Model the Data
 The model is easy enough to construct. Crew is a Fact, and CrewCallSign is a separate and optional Fact.

Crew

NameFirst
NameLast

CrewCallSign

CallSign AK
NameFirst

NameLast

Has

 This exposes the issue that the CallSign column does not have uniqueness, and it should have (the
requirement given by the "teacher" is inadequate). We implement that as an Alternate Key. Now when we
call a Crew member by CallSign, we get one and only one Crew, instead of some unknown number.

6. Construct Predicate
 The model exposes the Predicates, and the Predicates are used to verify the Model. The model [5] is further

confirmed.
Crew is independent

	

 Crew is identified by (NameLast, NameFirst)

	

 Crew has 0-or-1 CrewCallSign

CrewCallSign is dependent on, and identified by, Crew

	

 CrewCallSign belongs to 1 Crew

	

 CrewCallSign is primarily identified by (NameLast, NameFirst)

	

 CrewCallSign is alternately identified by (CallSign)

• Crew exists independently, eg. of Spaceship.
• CrewCallSign is dependent on Crew, ie. it exists only in the context of a Crew row.

14 Jun 15 Umbra Æternitatis’ StackOverflow Question
Page 14 of 25 PerformanceDBA’s Answer

http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/users/484814/
http://stackoverflow.com/users/484814/

C.3 Flight Normalisation
1. Initial
 Appreciate that the data given (falsely, in tabular from) is merely an user perception of the data, not a table,

and it needs Normalisation.
Perception of Flight Data

1

28

1

22

1

18

29

FlightNum

Soyuz TM-31

Atlantis

Soyuz TMA-14

Endeavour

Soyuz TMA-15M

Endeavour

Atlantis

NULL

STS-117

NULL

STS-126

NULL

STS-111

STS-122

FlightNameShipName

 The evidence that it is not Normalised, that it is not Relational is, the data values are in un-normalised form,
that we have since Normalised under Spaceship Normalisation.

 Further, users do not use NULL. If they see NULL in a report, it confuses them, and then the NULL has to be
explained. We can take it that the requirement is, American Flights are named, but Russian Flights are
not. Unlike the "teacher", we do not have to present confusing information to the user.

2. Surrogate Fail
 Now it is obvious to me, the evidence is, once again, that the "teacher" is attempting to force you into a

position in which you have to use a surrogate to identify the data (the NULL FlightName, and the FlightNum
is not unique), and thus validate the false notion that surrogates are valid.

 That is easily proved false, because (as you know from this Answer) surrogates do not provide the row
uniqueness demanded by the Relational Model.

Flight File
FlightNameShipName

Soyuz TM-31

Soyuz TM-31

Soyuz TM-31

Endeavour

Endeavour

Endeavour

Endeavour

FlightID

6661

6662

6663

6664

6665

6666

6667

NULL

NULL

NULL

STS-126

STS-126

STS-111

STS-111

 As evidenced in the example I have given, the surrogates provide unique Record IDs, woo hoo, but provide
no uniqueness in the data rows.

 Once again, the surrogate fails. It does not Identify the data, only data can Identify the data
 Once again, if used, the surrogate would be superfluous, providing nothing of value.
3. Flight is a Dependent Fact
 We need the data to Identify the data. An optional FlightName causes the given data to be inadequate in

terms of data uniqueness.
• We can't address your description "ShipName, FlightName are a Composite PK", because the basis of the

existence of a Flight is incorrect.
 While I would love to stick to the assignment requirement, in this case we can't, because data given in the

requirement is grossly inadequate, and it has ulterior motives.
 Here we don't need to add elements to the data, such that we can uniquely Identify it, here we only need to

assert that the Fact of a Flight is not independent (they would be, if a surrogate is forced, but such an
assertion is false).

 Flights are not independent. They cannot occur without a Spaceship. The truth is, the Fact of a Flight is
dependent on the Fact of a Spaceship, it simply cannot occur without one.

 Now. in the real world of ISS flight, a Spaceship can take flight at most once on any given day. Given that a
Flight is Dependent on Spaceship, and nothing else, the Identifier for Flight is therefore the Spaceship
Primary Key, plus Date.

 When that Identifier is used, the nullability of FlightName, and the non-uniqueness of FlightNum, are
demoted to non-issues, plain attributes, because they have no relevance pertaining to the Identifier. The
trickery used to force you into a non-relational filing systems is puncture.

Umbra Æternitatis’ StackOverflow Question 14 Jun 15
PerformanceDBA’s Answer Page 15 of 25

http://stackoverflow.com/a/29726132/484814
http://stackoverflow.com/a/29726132/484814
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/users/484814/
http://stackoverflow.com/users/484814/

4. Model the Data

Spaceship

Name
LaunchVehicleCode
ShipTypeCode

ShipType

Name
ShipTypeCode

LaunchVehicle

Name
LaunchVehicleCode

Classifes Propels

Flight

FlightNum
FlightName
Date
Name
LaunchVehicleCode
ShipTypeCode

Is Used For

 I won't take you through all the steps, since they are adequately explained in the previous examples above,
and you can execute them yourself.

5. Construct Predicate
 The model exposes the Predicates, and the Predicates are used to verify the Model. The model [4] is further

confirmed.
LaunchVehicle is independent
	

 LaunchVehicle is identified by (LaunchVehicleCode)
	

 LaunchVehicle propels 0-to-n Spaceships
	

 LaunchVehicle is described by (Name)
ShipType is independent
	

 ShipType is identified by (ShipTypeCode)
	

 ShipType classifies 0-to-n Spaceships
	

 ShipType is described by (Name)
Spaceship is dependent on, and identified by, LaunchVehicle
	

 Spaceship is propelled by 1 LaunchVehicle
	

 Spaceship is dependent on, and identified by, ShipType
	

 Spaceship is classified by 1 ShipType
	

 Spaceship is identified by (ShipTypeCode, LaunchVehicleCode, Name)
	

 Spaceship is used for 0-to-n Flights
Flight is dependent on, and identified by, Spaceship
	

 Flight uses 1 Spaceship
	

 Flight is identified by (ShipTypeCode, LaunchVehicleCode, Name, Date)
	

 Flight is described by (FlightName, FlightNum)

6. Derived Relation, View
 Now we can prove the data model even further, by demonstrating that any and all derived Relations can be

projected from the base relations (tables, implemented).

Flight_View

1

28

1

22

1

18

29

FlightNumFlightName

STS-117

STS-126

STS-111

STS-122

Name

Soyuz

Space Shuttle

Soyuz

Space Shuttle

Soyuz

Space Shuttle

Space Shuttle

LaunchVehicleShipType

TM-31

Outboard

TMA-14

Outboard

TMA-15

Outboard

Outboard

Soyuz

Atlantis

Soyuz

Endeavour

Soyuz

Endeavour

Atlantis

 This is the Flight View for the Flight base relation, or table, minus the Code columns.

14 Jun 15 Umbra Æternitatis’ StackOverflow Question
Page 16 of 25 PerformanceDBA’s Answer

http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/users/484814/
http://stackoverflow.com/users/484814/

7. Initial Perception is View
 Now we can evaluate the Initial Perception of the Flight Data, against the relevant columns in the Flight.

Of course, since we have Normalised the base relations, the data in the View is Normalised (but flattened, by
definition).
• Thus we prove that the data demanded by the user , is not such. It is merely the data as perceived by non-

technical people, that technical people must (a) differentiate base vs derived relations from, and (b)
Normalise the base relations only.

• And we prove that the data demanded, is entirely possible, easy to project, from the Normalised base
relations.

Umbra Æternitatis’ StackOverflow Question 14 Jun 15
PerformanceDBA’s Answer Page 17 of 25

http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/users/484814/
http://stackoverflow.com/users/484814/

C.4 Role Normalisation
1. Initial
 Appreciate that the data given (falsely, in tabular from) is merely an user perception of the data, not a table,

and it needs Normalisation.
Perception of Designation Data

Deliver

Return

Backup

Deliver

Deliver

Return

Deliver

Return

Return

CrewType

4243

4243

4445

4344

4445

4344

55

44

55

CrewId

Soyuz TM-15M

Soyuz TM-15M

Soyuz TM-15M

Soyuz TM-16M

Soyuz TM-17M

Soyuz TM-18M

Endeavour

Endeavour

Endeavour

NULL

NULL

NULL

NULL

NULL

NULL

STS-111

STS-112

STS-113

FlightNameShipName

 The evidence that it is not Normalised, that it is not Relational is, the data values are in un-normalised form,
that we have since Normalised under Spaceship Normalisation, Crew Normalisation, and Flight
Normalisation.

 Further, Designation and CrewAssignment data are nicely jumbled into one perception or view. Let's deal
with one thing at a time, in a scientific manner, with the dependencies in the correct order.

2. Remove Repeating Group C
 We can see that there is another series of repeating data in CrewType. Further, the label CrewType is not

accurate, it does not indicate a Type of Crew (such as a Qualification), it indicates a role that is assigned for
the Crew, for each Flight (separate to their Qualification). Let's label it accurately, as Role.

 Note the careful choice of words: design and assign are verbs; role is a noun. The tables are nouns, the
relationships are the actions between the nouns, hence the Verb Phrase.

Role
Name

Backup

Deliver

Return

RoleCode

B

D

R

Perception of Designation Data

Deliver

Return

Backup

Deliver

Deliver

Return

Deliver

Return

Return

Role

D

R

B

D

D

R

D

R

R

RoleCode

4243

4243

4445

4344

4445

4344

55

44

55

CrewId

Soyuz TM-15M

Soyuz TM-15M

Soyuz TM-15M

Soyuz TM-16M

Soyuz TM-17M

Soyuz TM-18M

Endeavour

Endeavour

Endeavour

NULL

NULL

NULL

NULL

NULL

NULL

STS-111

STS-112

STS-113

FlightNameShipName

Designates

 We remove the repeating group in the Designation perception, we Normalise it into a reference table
Designation. A third data classification treated correctly.

 You have done that, intuitively, in your One More Update. I have given the precise steps, and corrected the
label.

3. Model the Data
Role

Name

RoleCode

 Modelling that could not be simpler.
4. Construct Predicate
 The Predicates too, are simple.

Role is independent
	

 Role is identified by (RoleCode)
	

 Role is described by (Name)

 The model [3] is further confirmed.
14 Jun 15 Umbra Æternitatis’ StackOverflow Question
Page 18 of 25 PerformanceDBA’s Answer

http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/users/484814/
http://stackoverflow.com/users/484814/

C.5 CrewAssignment Normalisation
1. Initial
 Appreciate that the data given (falsely, in tabular from) is merely an user perception of the data, not a table,

and it needs Normalisation.
 Now that we have subtracted Role from the Designation perception, which was all jumbled (Role

Normalisation.1), we have just the data that relates to the assignment of the crew, that remains for
Normalisation. Responding to that jumble would (a) validate it, and (b) take much more time to resolve.

 Rather than dealing with that scrambled perception, given that we have already Normalised and verified
most of the data concerned, on that basis, we can simply continue our Normalisation, for the remaining un-
normalised data.

2. CrewAssignment is a Dependent Fact
 Once again, here we only need to assert that the Fact of a CrewAssignment is not independent (it would be, if

a surrogate is forced, but such an assertion is false).
 CrewAssignment is not independent. The truth is, the Fact of a CrewAssignment is dependent on the Fact of

a Flight having been scheduled, it should not occur without one.
 Given that CrewAssignment is Dependent on Flight, the Identifier for CrewAssignment is therefore the

Flight Primary Key, plus something.
 CrewAssignment is dependent on Crew as well. The truth is, the Fact of a CrewAssignment is dependent on

the Fact of a Crew having been established, it should not occur without one.
 Given that CrewAssignment is Dependent on Crew, the Identifier for CrewAssignment is therefore the Crew

Primary Key, plus something.
3. Model the Data

Crew

NameFirst
NameLast

CrewCallSign

CallSign AK
NameFirst
NameLast

Has

Spaceship

Name
LaunchVehicleCode
ShipTypeCode

ShipType

Name
ShipTypeCode

LaunchVehicle

Name
LaunchVehicleCode

Classifes Propels

Role

Name
RoleCode

Flight

FlightNum
FlightName
Date
Name
LaunchVehicleCode
ShipTypeCode

Designates

Is Manned By

Is Assigned To

CrewAssignment

RoleCode
NameFirst
NameLast
Date
Name
LaunchVehicleCode
ShipTypeCode

Is Used For

 Since CrewAssignment is dependent on both Flight, and Crew, it is an Associative Table.
 As such, the Primary Key is the combination of the Primary Keys of the two parent tables.
 A surrogate cannot replace the Primary Key, which provides row uniqueness, and thus cannot be removed.

A surrogate would add nothing, it would be superfluous.

Umbra Æternitatis’ StackOverflow Question 14 Jun 15
PerformanceDBA’s Answer Page 19 of 25

http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/users/484814/
http://stackoverflow.com/users/484814/

4. Construct Predicate
 The model exposes the Predicates, and the Predicates are used to verify the Model. The model [3] is further

confirmed.
Crew is independent
	

 Crew is identified by (NameLast, NameFirst)
	

 Crew has 0-or-1 CrewCallSign
	

 Crew is assigned to 0-to-n CrewAssignments
CrewCallSign is dependent on, and identified by, Crew
	

 CrewCallSign belongs to 1 Crew
	

 CrewCallSign is primarily identified by (NameLast, NameFirst)
	

 CrewCallSign is alternately identified by (CallSign)
Role is independent
	

 Role is identified by (RoleCode)
	

 Role is described by (Name)
	

 Role designates 0-to-n CrewAssignments
LaunchVehicle is independent
	

 LaunchVehicle is identified by (LaunchVehicleCode)
	

 LaunchVehicle propels 0-to-n Spaceships
	

 LaunchVehicle is described by (Name)
ShipType is independent
	

 ShipType is identified by (ShipTypeCode)
	

 ShipType classifies 0-to-n Spaceships
	

 ShipType is described by (Name)
Spaceship is dependent on, and identified by, LaunchVehicle
	

 Spaceship is propelled by 1 LaunchVehicle
	

 Spaceship is dependent on, and identified by, ShipType
	

 Spaceship is classified by 1 ShipType
	

 Spaceship is identified by (ShipTypeCode, LaunchVehicleCode, Name)
	

 Spaceship is used for 0-to-n Flights
Flight is dependent on, and identified by, Spaceship
	

 Flight uses 1 Spaceship
	

 Flight is identified by (ShipTypeCode, LaunchVehicleCode, Name, Date)
	

 Flight is described by (FlightName, FlightNum)
	

 Flight is manned by 0-to-n CrewAssignments
CrewAssignment is dependent on, and identified by, Flight
	

 CrewAssignment is a manning of 1 Flight
 CrewAssignment is dependent on, and identified by, Crew
	

 CrewAssignment is an assignment of 1 Crew
	

 CrewAssignment is a designation of 1 Role
	

 CrewAssignment is identified by (ShipTypeCode, LaunchVehicleCode, Name, Date,

NameLast, NameFirst)

• CrewAssignment is an Associative table, dependent on Flight, and on Crew
• CrewAssignment is Identified by Flight PK and Crew PK
• CrewAssignment.Role describes CrewAssignment.
•

14 Jun 15 Umbra Æternitatis’ StackOverflow Question
Page 20 of 25 PerformanceDBA’s Answer

http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/users/484814/
http://stackoverflow.com/users/484814/

5. Derived Relation, View
 Now we can prove the data model even further, by demonstrating that any and all derived Relations can be

projected from the base relations (tables, implemented).

CrewAssignment_View
Role

Deliver

Return

Backup

Deliver

Deliver

Return

Deliver

Return

Return

NameFirst

Ppp

Ppp

Qqq

Rrr

Qqq

Rrr

Sss

Ttt

Sss

NameLast

Pppppp

Pppppp

Qqqqqq

Rrrrrr

Qqqqqq

Rrrrrr

Ssssss

Tttttt

Ssssss

LaunchVehicle

TM-15M

TM-15M

TM-15M

TM-16M

TM-17M

TM-18M

Outboard

Outboard

Outboard

Name FlightName

Soyuz

Soyuz

Soyuz

Soyuz

Soyuz

Soyuz

Space Shuttle

Space Shuttle

Space Shuttle

ShipType

Soyuz

Soyuz

Soyuz

Soyuz

Soyuz

Soyuz

Endeavour

Endeavour

Endeavour

STS-111

STS-112

STS-113

 This is the projection or derived relation or CrewAssignment View for the CrewAssignment base relation, or
table, minus the Code columns.

6. Initial Perception is View
 Now we can evaluate the Initial Perception of the Designation Data, against the relevant columns in the

CrewAssignment View. Of course, since we have Normalised the base relations, the data in the View is
Normalised (but flattened, by definition).
• Thus we prove that the data demanded by the user, presented as a table, is not such. It is merely the data

as perceived by non-technical people, that technical people must (a) differentiate base vs derived relations
from, and (b) Normalise the base relations only.

• And we prove that the data demanded, is entirely possible, easy to project, from the Normalised base
relations.

Umbra Æternitatis’ StackOverflow Question 14 Jun 15
PerformanceDBA’s Answer Page 21 of 25

http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/users/484814/
http://stackoverflow.com/users/484814/

D.1 Question • First Set
In the progression above, I trust that I have explained, using your example, step by step, the essential elements,
the scientific considerations, from the Relational Model, as well as giving the method, that relate to your first set
of questions:

I wish to know how to correctly set up Primary Keys in a [Base] Relation. E.g. we have ER-diagram [and
example] which contain elements:
1. Key attributes
2. Weak key attributes
3. Identifying [and Non-identifying] relationships
4. Associative entities
... can we leave them as is or replace with [add] Surrogate Key s.
How to set up Primary Keys for Relations in order to handle all above Cases (perhaps some more Cases
which I did not mention)?
How to avoid using Surrogate Keys and in which Cases they're necessary?

Further, I specifically gave the differentiation re base vs derived relations, such that the usual confusion of post-
Codd authors and the "teachers" that follow them, is eliminated.

Relational Key vs Surrogate

I have provided complete coverage of this issue, at each step, and that should suffice to eliminate discussion
about same.
Note that in science, truth is objective, not subjective. Thus there is no argument to be had, no consensus to be
reached. Those who argue about it, and those who seek consensus, by the evidence that I have provided here,
are simply ignorant of the science, and particularly of the Relational Model. When I am engaged, I don’t argue,
I simply provide education, which eliminates the argument.
Date; Darwen; Fagin; Fowler; Ambler; Kimball; Celko; Abitebul; Hull; Vianu, and their followers, such as
Hidders; Köhler; and the hundreds of "professors", have a lot to answer for. Anyone who understands what I
have written above can use the material to prove each and every one of them to be (a) ignorant of the science,
(b) ignorant of the Relational Model that they allege to be promoting, and (c) and dead wrong.
By science and straight-forward logic (above), the facts are:
1. Relational keys provide:

• Relational Integrity (as distinct from Referential integrity). This item alone, once understood, kills any
argument.

• Relational Power (JOIN power at the level of your question, meaning fewer JOINs to get at the data, in
stark contradiction to the magical mystical myths that state [but do not prove] that Relational Keys result
in more JOINs),

• Relational Speed, that cannot be obtained by other methods. Two to three orders of magnitude faster than
the Record ID systems it replaced.

2. Record Filing Systems, typified by:
• Record IDs as "primary key" in every file
• Every file is independent (dependencies are not supported)
• Every relationship is Non-identifying (there are no Relational Keys),

have none of that. No Relational Integrity (it does have Referential Integrity of records, but not of rows), no
Relational Power due to the violation of the Access Path Independence Rule (more JOINs on every access),
and no Relational Speed (it has the speed of pre-1970's ISAM filing systems).
The knee-jerk implementation of surrogates on every file remains dead wrong. Further (in addition to the
above), it cripples the modelling exercise, and thus prevents the genuine modelling of Facts (the database is a
collection of Facts), the result being not only a Record Filing system, but one where the files are not Normalised
to Facts. The consequence is massive data duplication, and an RFS that is difficult to use, to write code for.
If that evidence is not enough, if you [or anyone else] want further proof, please ask a new question, and ping
me.

14 Jun 15 Umbra Æternitatis’ StackOverflow Question
Page 22 of 25 PerformanceDBA’s Answer

http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/users/484814/
http://stackoverflow.com/users/484814/

Surrogate has a Place

Please note, that is not to say that surrogates do not have any use. It is not a simplistic black-or-white issue.
They do have an use. Codd spent considerable time examining them, and refuting them (those papers are
fraudulently used to portray that Codd validated surrogates in generic terms). But the valid use of surrogates is
far beyond the question, and the detail covered in the answer.

Umbra Æternitatis’ StackOverflow Question 14 Jun 15
PerformanceDBA’s Answer Page 23 of 25

http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/users/484814/
http://stackoverflow.com/users/484814/

D.2 Question • Second Set
 How to set up datatypes for Primary Keys
Good question. I will answer in terms of the Standard, much like the Standard for Naming of components in a
Relational Database.
You should set up, and use, a set of Datatypes to cover all the Domains (Relational term) in the database. These
are the Building Blocks of your database. Domain definition is the first level of Constraint on data. Conversely,
there should not be a column in the database that is a raw Datatype.
Your carefully chosen Datatypes should be used in all SQL code as well. This prevents entire category of
errors. One worth mentioning is:
• Datatype Mismatch. Easily the most common error, often hard to determine, and the easiest to prevent. The

Datatypes are defined once, in the central location where they belong, the database, and used by everything
that uses the database.

Primary Keys, and indeed the components of a Primary Key, are not simple attributes. They have qualities that
plain attributes do not have. Further they are used in ways that attributes are not (eg. for JOINs). Thus they
qualify for special treatment.
• Each component of a Primary Key should have a private Datatype defined for it.
• This Datatype should be used wherever the Primary Key is referenced (ie. migrated as a Foreign Key).
• Further, note that this documents the fact that for Relational keys, every reference of a Primary Key (ie.

migrated as a Foreign Key) is directly related to the Primary Key.
• Hint: Direct JOIN, without navigating the intervening tables.

 If a Composite Primary Key has to be passed into Child Relation, shall it be replaced with Surrogate?
No. Answered in detail above.

 Advantages and disadvantages of using Surrogate Key s in my view:
 Advantages
 They're compact (usually of type INT) and are sometimes good replacement for Composite Keys
Compact is an irrelevant consideration. We no longer work in Kilobytes and Megabytes, we work in Gigabytes.
The power of machines is no longer measured in Megahertz, it is measured in Gigahertz. SQL platforms (not
counting the NONsql s/w fraudulently using the name of the SQL Standard without complying with it) are more
than capable of handling Relational Keys.
• In case you are not aware, the SQL platforms are heavily optimised for Relational Database access. Even

little old myNONsql provides a Clustered Index, at least up at the Big House.
• No optimisation is possible for surrogates, for Record Filing Systems.
If you want a Relational Database, ie. Relational Integrity; Relational Power; Relational Speed, then you need
composite Keys. That is all there is to it. The consideration is irrelevant
If you are happy with a Record Filing System, by all means, use one, and then you don't need Relational Keys,
use surrogates.

 They're illustrative when they're in Foreign Keys
First, they are not illustrative, in any way, shape, or form. Relational Keys are illustrative, especially when they
are Foreign Keys.

• In the case that your definition of illustrative is different to mine, then in Foreign Keys, they are no more
nor less illustrative than Relational Keys.

Second, you are contradicting your statement (below), that they are meaningless. I agree that they are
meaningless numbers.

 They're painlessly indexed
Relational Keys suffer no more, and no less pain, in being indexed. On SQL platforms.

14 Jun 15 Umbra Æternitatis’ StackOverflow Question
Page 24 of 25 PerformanceDBA’s Answer

http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/users/484814/
http://stackoverflow.com/users/484814/

 Disadvantages
 They're numbers and meaningless. E.g. I wish to fill up Junction [Associative] Table in my Interface

Application - so I will be left no other choice but to relate just numbers
 They're confusing
That is correct. Numbers have no meaning. Users hate them. Developers love them in simple examples
(starting from 1, such as in questions on SO), but once they are faced with 6- and 8-digit numbers, they too, hate
them, and yearn for meaningful codes and strings.
Relational Keys have meaning, and carry that meaning wherever they are migrated.

 They're redundant
If you understand that a surrogate is not a replacement for a compound Key, then yes, they are redundant.
When used correctly (which is rare, and the condition is beyond the scope of this question), no, they are not
redundant.
If you don't understand that a surrogate is not a replacement for a compound Key, then you will be flooded with
duplicate rows, and surrogates are not redundant, they are the single column "primary key" that guarantees the
flood.
The Two Main Disadvantages, that make them untenable for Relational Database, that silence any argument,
have not been mentioned.
1. Loss of Relational Integrity
 Surrogates are physical pointers to Record IDs, which means they have "integrity" re Record IDs, but not the

content of those records, the rows. Thet have no Relational Integrity 3.
 Relational Keys are Logical, they form the logical structure of the database, they have meaning and that

meaning is carried wherever the Key is carried. In so doing, they maintain context and logical Integrity
between the rows (regardless of records).

2. Loss of Relational Power
 Loss of JOIN power. Due to violation of the Access Path Independence Rule, which is a requirement of the

Relational Model.
 Every file between any two distal files that are queried, and that are related, have to be navigated, in order to

"link" the two subject files.
 Whereas in a Relational Database, the two tables can be JOINed directly, without navigating the intervening

tables. The Logical key is the Navigator.

 As for setting up datatypes - there must be more tricks as well as setting up Primary Keys as whole.
No tricks from me. I have given the requirement for Datatypes for Compound Primary Keys above.
But treating Compound Primary Keys as a single unit, no, that is dead wrong. In each instance that it is located
(ie. including their migration, as Foreign Keys), you must be able to address each component of the Key,
directly and simply. You have that now. Do not complicate it.
Therefore to place it in a complex Datatype, is wrong.
• Complex datatypes have an use, for external services, such as XML_EXTRACT. They have no use within the

database.
Please study carefully, and comment, etc. If there is anything that is not crystal clear, or that needs expansion,
please ask.
If you have trouble locating Codd’s papers, go to my profile, and email me.
I will respond to your comments as time permits.

Umbra Æternitatis’ StackOverflow Question 14 Jun 15
PerformanceDBA’s Answer Page 25 of 25

http://stackoverflow.com/users/4923613/
http://stackoverflow.com/users/4923613/
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/questions/30639562
http://stackoverflow.com/users/484814/
http://stackoverflow.com/users/484814/

