
Relational table naming convention
[+173] [5] Andreas
[2011-01-15 23:17:05]
[database database-design coding-style naming-conventions relational-database]
[https://stackoverflow.com/questions/4702728/relational-table-naming-convention]

I'm starting a new project and would like to get my table- and column names right from the
start. For example I've always used plural in table names but recently learned singular is
correct.

So, if I got a table "user" and then I got products that only the user will have, should the table be
named "user_product" or just "product" ? This is a one to many relationship.

And further on, if i would have (for some reason) several product descriptions for each product,
would it be "user_product_description" or "product_description" or just "description"? Of
course with the right foreign keys set.. Naming it only description would be problematic since i
could also have user description or account description or whatever..

What about if i want a pure relational table (many to many) with only two columns, what would
this look like? "user_stuff" or maybe something like "rel_user_stuff" ? And if the first one, what
would distinguish this from, for example "user_product"?

Any help is highly appreciated and if there is some sort of naming convention standard out
there that you guys recommend, feel free to link.

Thanks

(25) (a) The question was asked and answered four years ago. (b) both the question and the selected answer have high
votes. (c) We have a naming-conventions tag (d) it may be "opinion-based" for a beginner to answer, but it is a matter
of Standards to experienced technical people, whom the seeker is seeking. Nevertheless, reasons are given for each of
the many prescriptions. (e) Therefore, by virtue of the evidence, primarily opinion-based is patently false. -
PerformanceDBA
it is a matter of Standards to experienced technical people Or to people who came across the ancient IDEF standards
and believe that they are actual Standards. - gbr
(1) Further, there are several other Qs re Naming Conventions, all do have a value. Refer Linked in the column on the
right.. - PerformanceDBA
(1) @gbr. IT people get their current Standards from ISO. IDEF1X was last confirmed by ISO in 2019. -
PerformanceDBA

[+434] [2011-01-16 00:59:29] PerformanceDBA [ACCEPTED]

Table • Name

recently learned singular is correct

Yes. Beware of the heathens. Plural in the table names are a sure sign of someone who has not read any of
the standard materials and has no knowledge of database theory.

Some of the wonderful things about Standards are:

they are all integrated with each other
they work together
they were written by minds greater than ours, so we do not have to debate them.

Relational table naming convention http://www.stackprinter.com/export?question=4702728&serv...

1 of 13 21-Aug-22, 19:52

The standard table name refers to each row in the table, which is used in the all verbiage, not the total
content of the table (we know that the Customer table contains all the Customers).

Relationship, Verb Phrase

In genuine Relational Databases that have been modelled (as opposed to pre-1970's Record Filing
Systems [characterised by Record IDs which are implemented in an SQL database container for
convenience):

the tables are the Subjects of the database, thus they are nouns, again, singular
the relationships between the tables are the Actions that take place between the nouns, thus they
are verbs (i.e they are not arbitrarily numbered or named)
that is the Predicate
all that can be read directly from the data model (refer my examples at the end)
(the Predicate for an independent table (the top-most parent in an hierarchy) is that it is
independent)
thus the Verb Phrase is carefully chosen, so that it is the most meaningful, and generic terms are
avoided (this becomes easier with experience). The Verb Phrase is important during modelling
because it assists in resolving the model, ie. clarifying relations, identifying errors, and correcting
the table names.

Diagram_A [1]

Of course, the relationship is implemented in SQL as a CONSTRAINT FOREIGN KEY in the child table
(more, later). Here is the Verb Phrase (in the model), the Predicate that it represents (to be read from
the model), and the FK Constraint Name:

Initiates
Each Customer Initiates 0-to-n SalesOrders
Customer_Initiates_SalesOrder_fk

Table • Language

However, when describing the table, particularly in technical language such as the Predicates, or other
documentation, use singular and plurals as they naturally in the English language. Keeping in mind the
table is named for the single row (relation) and the language refers to each derived row (derived
relation):

Each Customer initiates zero-to-many SalesOrders

not

Relational table naming convention http://www.stackprinter.com/export?question=4702728&serv...

2 of 13 21-Aug-22, 19:52

Customers have zero-to-many SalesOrders

So, if I got a table "user" and then I got products that only the user will have, should the
table be named "user-product" or just "product"? This is a one to many relationship.

(That is not a naming-convention question; that is a a db design question.) It doesn't matter if
user::product is 1::n. What matters is whether product is a separate entity and whether it is an
Independent Table, ie. it can exist on its own. Therefore product, not user_product.

And if product exists only in the context of an user, ie. it is a Dependent Table, therefore
user_product.

Diagram_B [2]

And further on, if i would have (for some reason) several product descriptions for each
product, would it be "user-product-description" or "product-description" or just
"description"? Of course with the right foreign keys set.. Naming it only description would
be problematic since i could also have user description or account description or
whatever.

That's right. Either user_product_description xor product_description will be correct, based
on the above. It is not to differentiate it from other xxxx_descriptions, but it is to give the name a
sense of where it belongs, the prefix being the parent table.

What about if i want a pure relational table (many to many) with only two columns, what
would this look like? "user-stuff" or maybe something like "rel-user-stuff" ? And if the first
one, what would distinguish this from, for example "user-product"?

1. Hopefully all the tables in the relational database are pure relational, normalised tables. There is
no need to identify that in the name (otherwise all the tables will be rel_something).

2. If it contains only the PKs of the two parents (which resolves the logical n::n relationship that
does not exist as an entity at the logical level, into a physical table), that is an Associative Table.
Yes, typically the name is a combination of the two parent table names.

Note that is such cases the Verb Phrase applies to, and is read as, from parent to parent,
ignoring the child table, because its only purpose in life is to relate the two parents.

Relational table naming convention http://www.stackprinter.com/export?question=4702728&serv...

3 of 13 21-Aug-22, 19:52

Diagram_C [3]

If it is not an Associative Table (ie. in addition to the two PKs, it contains data), then name
it appropriately, and the Verb Phrases apply to it, not the parent at the end of the
relationship.

Diagram_D [4]

3. If you end up with two user_product tables, then that is a very loud signal that you have not
normalised the data. So go back a few steps and do that, and name the tables accurately and
consistently. The names will then resolve themselves.

Naming Convention
Any help is highly appreciated and if there is some sort of naming convention standard
out there that you guys recommend, feel free to link.

What you are doing is very important, and it will affect the ease of use and understanding at every level.
So it is good to get as much understanding as possible at the outset. The relevance of most of this will not
be clear, until you start coding in SQL.

1. Case is the first item to address. All caps is unacceptable. Mixed case is normal, especially if the
tables are directly accessible by the users. Refer my data models. Note that when the seeker is
using some demented NonSQL, that has only lowercase, I give that, in which case I include
underscores (as per your examples).

2. Maintain a data focus, not an application or usage focus. It is, after all 2011, we have had Open
Architecture since 1984, and databases are supposed to be independent of the apps that use
them.

Relational table naming convention http://www.stackprinter.com/export?question=4702728&serv...

4 of 13 21-Aug-22, 19:52

That way, as they grow, and more than the one app uses them, the naming will remain meaningful,
and need no correction. (Databases that are completely embedded in a single app are not
databases.) Name the data elements as data, only.

3. Be very considerate, and name tables and columns very accurately. Do not use UpdatedDate if
it is a DATETIME datatype, use UpdatedDtm. Do not use_description if it contains a dosage.

4. It is important to be consistent across the database. Do not use NumProduct in one place to
indicate number of Products and ItemNo or ItemNumin another place to indicate number of
Items. Use NumSomething for numbers-of, and SomethingNo or SomethingId for identifiers,
consistently.

5. Do not prefix the column name with a table name or short code, such as user_first_name. SQL
already provides for the tablename as a qualifier:

 table_name.column_name -- notice the dot

6. Exceptions:

The first exception is for PKs, they need special handling because you code them in joins, all
the time, and you want keys to stand out from data columns. Always use user_id, never
id.

Note that this is not a table name used as a prefix, but a proper descriptive name for
the component of the key: user_id is the column that identifies an user, not the id
of the user table.

(Except of course in record filing systems, where the files are accessed by
surrogates and there are no relational keys, there they are one and the same
thing).

Always use the exact same name for the key column wherever the PK is carried
(migrated) as an FK.
Therefore the user_product table will have an user_id as a component of its PK
(user_id, product_no).
the relevance of this will become clear when you start coding. First, with an id on
many tables, it is easy get mixed up in SQL coding. Second, anyone other that the
initial coder has no idea what he was trying to do. Both of which are easy to prevent,
if the key columns are treated as above.

The second exception is where there is more than one FK referencing the same parent table
table, carried in the child. As per the Relational Model, use Role Names to differentiate
the meaning or usage, eg. AssemblyCode and ComponentCode for two PartCodes. And
in that case, do not use the undifferentiated PartCode for one of them. Be precise.

Diagram_E [5]

7. Prefix
Where you have more than say 100 tables, prefix the table names with a Subject Area:

REF_ for Reference tables
OE_ for the Order Entry cluster, etc.

Only at the physical level, not the logical (it clutters the model).

8. Suffix
Never use suffixes on tables, and always use suffixes on everything else. That means in the logical,
normal use of the database, there are no underscores; but on the administrative side, underscores
are used as a separator:

Relational table naming convention http://www.stackprinter.com/export?question=4702728&serv...

5 of 13 21-Aug-22, 19:52

_V View (with the main TableName in front, of course)
_fk Foreign Key (the constraint name, not the column name)
_cac Cache
_seg Segment
_tr Transaction (stored proc or function)
_fn Function (non-transactional), etc.

The format is the table or FK name, an underscore, and action name, an underscore, and finally
the suffix.

This is really important because when the server gives you an error message:

____blah blah blah error on object_name

you know exactly what object was violated, and what it was trying to do:

____blah blah blah error on Customer_Add_tr

9. Foreign Keys (the constraint, not the column). The best naming for a FK is to use the Verb
Phrase (minus the "each" and the cardinality).

Customer_Initiates_SalesOrder_fk
Part_Comprises_Component_fk
Part_IsConsumedIn_Assembly_fk

Use the Parent_Child_fk sequence, not Child_Parent_fk is because (a) it shows up in the
correct sort order when you are looking for them and (b) we always know the child involved, what
we are guessing at is, which parent. The error message is then delightful:

____Foreign key violation on Vendor_Offers_PartVendor_fk.

That works well for people who bother to model their data, where the Verb Phrases have been
identified. For the rest, the record filing systems, etc, use Parent_Child_fk.

10. Indices are special, so they have a naming convention of their very own, made up of, in order, each
character position from 1 to 3:

U Unique, or _ for non-unique
C Clustered, or _ for non-clustered
_ separator

For the remainder:

If the key is one column or a very few columns:
____ColumnNames

If the key is more than a few columns:
____PK Primary Key (as per model)
____AK[*n*] Alternate Key (IDEF1X term)

Note that the table name is not required in the index name, because it always shows up as
table_name.index_name.

So when Customer.UC_CustomerId or Product.U__AK appears in an error message, it tells
you something meaningful. When you look at the indices on a table, you can differentiate them
easily.

11. Find someone qualified and professional and follow them. Look at their designs, and carefully

Relational table naming convention http://www.stackprinter.com/export?question=4702728&serv...

6 of 13 21-Aug-22, 19:52

study the naming conventions they use. Ask them specific questions about anything you do not
understand. Conversely, run like hell from anyone who demonstrates little regard for naming
conventions or standards. Here's a few to get you started:

They contain real examples of all the above. Ask questions re naming questions in this
thread.
Of course, the models implement several other Standards, beyond naming conventions; you
can either ignore those for now, or feel free to ask specific new questions.
They are several pages each, inline image support at Stack Overflow is for the birds, and
they do not load consistently on different browsers; so you will have to click the links.
Note that PDF files have full navigation, so click on the blue glass buttons, or the objects
where expansion is identified:
Readers who are unfamiliar with the Relational Modelling Standard may find the IDEF1X
Notation [6] helpful.

Order Entry & Inventory [7] with Standard-compliant Addresses

Simple inter-office Bulletin [8] system for PHP/MyNonSQL

Sensor Monitoring [9] with full Temporal capability

Answers to Questions
That cannot be reasonably answered in the comment space.

Larry Lustig:
... even the most trivial example shows ...
If a Customer has zero-to-many Products and a Product has one-to-many Components
and a Component has one-to-many Suppliers and a Supplier sells zero-to-many
Components and a SalesRep has one-to-many Customers what are the "natural" names
the tables holding Customers, Products, Components, and Suppliers?

There are two major problems in your comment:

1. You declare your example to be "the most trivial", however, it is anything but. With that sort of
contradiction, I am uncertain if you are serious, if technically capable.

2. That "trivial" speculation has several gross Normalisation (DB Design) errors.

Until you correct those, they are unnatural and abnormal, and they do not make any sense.
You might as well name them abnormal_1, abnormal_2, etc.

You have "suppliers" who do not supply anything; circular references (illegal, and
unnecessary); customers buying products without any commercial instrument (such as
Invoice or SalesOrder) as a basis for the purchase (or do customers "own" products?);
unresolved many-to-many relationships; etc.

Once that is Normalised, and the required tables are identified, their names will become
obvious. Naturally.

In any case, I will try to service your query. Which means I will have to add some sense to it, not knowing
what you meant, so please bear with me. The gross errors are too many to list, and given the spare
specification, I am not confident I have corrected them all.

I will assume that if the product is made up of components, then the product is an assembly, and
the components are used in more than one assembly.

Relational table naming convention http://www.stackprinter.com/export?question=4702728&serv...

7 of 13 21-Aug-22, 19:52

Further, since "Supplier sells zero-to-many Components", that they do not sell products or
assemblies, they sell only components.

Speculation vs Normalised Model [10]

In case you are not aware, the difference between square corners (Independent) and round corners
(Dependent) is significant, please refer to the IDEF1X Notation link. Likewise the solid lines (Identifying)
vs dashed lines (Non-identifying).

... what are the "natural" names the tables holding Customers, Products, Components, and
Suppliers?

Customer
Product
Component (Or, AssemblyComponent, for those who realise that one fact identifies the other)
Supplier

Now that I have resolved the tables, I don't understand your problem. Perhaps you can post a specific
question.

VoteCoffee:
How are you handling the scenario Ronnis posted in his example where multiple
relationships exist between 2 tables (user_likes_product, user_bought_product)? I may
misunderstand, but this seems to result in duplicate table names using the convention you
detailed.

Assuming there are no Normalisation errors, User likes Product is a predicate, not a table. Do not
confuse them. Refer to my Answer, where it relates to Subjects, Verbs, and Predicates, and my response
to Larry immediately above.

Each table contains a set of Facts (each row is a Fact). Predicates (or propositions), are not Facts,
they may or may not be true.

The Relational Model is based on First Order Predicate Calculus (more commonly known
as First Order Logic). A Predicate is a single-clause sentence in simple, precise English, that
evaluates to true or false.

Further, each table represents, or is the implementation of, many Predicates, not one.

A query is a test of a Predicate (or a number of Predicates, chained together) that results in true
(the Fact exists) or false (the Fact does not exist).

Thus tables should be named, as detailed in my Answer (naming conventions), for the row, the
Fact, and the Predicates should be documented (by all means, it is part of the database
documentation), but as a separate list of Predicates.

This is not a suggestion that they are not important. They are very important, but I won't write
that up here.

Quickly, then. Since the Relational Model is founded on FOPC, the entire database can be said to
be a set of FOPC declarations, a set of Predicates. But (a) there are many types of Predicates, and
(b) a table does not represent one Predicate (it is the physical implementation of many
Predicates, and of different types of Predicates).

Therefore naming the table for "the" Predicate that it "represents" is an absurd concept.

The "theoreticians" are aware of only a few Predicates, they do not understand that since the RM
was founded on the FOL, the entire database is a set of Predicates, and of different types.

Relational table naming convention http://www.stackprinter.com/export?question=4702728&serv...

8 of 13 21-Aug-22, 19:52

And of course, they choose absurd ones from the few that they do know:
EXISTING_PERSON; PERSON_IS_CALLED. If it were not so sad, it would be hilarious.

Note also that the Standard or atomic table name (naming the row) works brilliantly for all
the verbiage (including all Predicates attached to the table). Conversely, the idiotic "table
represents predicate" name cannot. Which is fine for the "theoreticians", who understand
very little about Predicates, but retarded otherwise.

The Predicates that are relevant to the data model, are expressed in the model, they are of two
orders.

1. Unary Predicate
The first set is diagrammatic, not text: the notation itself. These include various
Existential; Constraint-oriented; and Descriptor (attributes) Predicates.

Of course, that means only those who can 'read' a Standard data model can read
those Predicates. Which is why the "theoreticians", who are severely crippled by their
text-only mindset, cannot read data models, why they stick to their pre-1984 text-
only mindset.

2. Binary Predicate
The second set is those that form relationships between Facts. This is the relation line.
The Verb Phrase (detailed above) identifies the Predicate, the proposition, that has been
implemented (which can be tested via query). One cannot get more explicit than that.

Therefore, to one who is fluent in Standard data models, all the Predicates that are
relevant, are documented in the model. They do not need a separate list of
Predicates (but the users, who cannot 'read' everything from the data model, do!).

Here is a Data Model [11], where I have listed the Predicates. I have chosen that example because
it shows the Existential, etc, Predicates, as well as the Relationship ones, the only Predicates not
listed are the Descriptors. Here, due to the seeker's learning level, I am treating him as an user.

Therefore the event of more than one child table between two parent tables is not a problem, just name
them as the Existential Fact re their content, and normalise the names.

The rules I gave for Verb Phrases for relationship names for Associative Tables come into play here. Here
is a Predicate vs Table [12] discussion, covering all points mentioned, in summary.

For a good short description re the proper use of Predicates and how to use them (which is quite a
different context to that of responding to comments here), visit this answer [13], and scroll down to the
Predicate section.

Charles Burns:
By sequence, I meant the Oracle-style object purely used to store a number and its next
according to some rule (e.g. "add 1"). Since Oracle lacks auto-ID tables, my typical use is
to generate unique IDs for table PKs. INSERT INTO foo(id, somedata) VALUES
(foo_s.nextval, "data"...)

Ok, that is what we call a Key or NextKey table. Name it as such. If you have SubjectAreas, use
COM_NextKey to indicate it is common across the database.

Btw, that is a very poor method of generating keys. Not scalable at all, but then with Oracle's
performance, it is probably "just fine". Further, it indicates that your database is full of surrogates, not
relational in those areas. Which means extremely poor performance and lack of integrity.

Relational table naming convention http://www.stackprinter.com/export?question=4702728&serv...

9 of 13 21-Aug-22, 19:52

[1] https://www.softwaregems.com.au/Documents/Student%20Resolutions/Andreas_A.pdf
[2] https://www.softwaregems.com.au/Documents/Student%20Resolutions/Andreas_B.pdf
[3] https://www.softwaregems.com.au/Documents/Student%20Resolutions/Andreas_C.pdf
[4] https://www.softwaregems.com.au/Documents/Student%20Resolutions/Andreas_D.pdf
[5] https://www.softwaregems.com.au/Documents/Student%20Resolutions/Andreas_E.pdf
[6] https://www.softwaregems.com.au/Documents/Documentary%20Examples
/IDEF1X%20Notation.pdf
[7] https://www.softwaregems.com.au/Documents/Documentary%20Examples
/Order%20DM%20Advanced.pdf
[8] https://www.softwaregems.com.au/Documents/Student%20Resolutions/Andrew
/Andrew%202%20DM.pdf
[9] https://www.softwaregems.com.au/Documents/Student%20Resolutions/Mark%20DM.pdf
[10] https://www.softwaregems.com.au/Documents/Student%20Resolutions/Larry%20Lustig.pdf
[11] https://www.softwaregems.com.au/Documents/Student%20Resolutions
/dzhu%20Generic%207%20DM.pdf
[12] https://www.softwaregems.com.au/Documents/Student%20Resolutions
/Predicate%20vs%20Table.pdf
[13] https://stackoverflow.com/a/29711063/484814

(1) Moderator Note I've cleaned up the comments here, there were far too many off-topic arguments. If you feel the
need to continue this discussion, then take it to chat. - Taryn
Thank you. I did not realise that I should move comments such as "This is the kind of answer I just wish I could star"
into the Answer. I will conduct myself accordingly. There were also a lot of unacceptable comments, which should not
be allowed on SO. Evidence that such persons should be banned, but no chance of that. Thanks again. -
PerformanceDBA
(2) @ChrisF. (a) Thank you very much for the explanation, I didn't understand the previous moderator actions. (b) Is it
possible for you to re-open the question, the attempt to close it is obviously an error (see my comment on the question).
Otherwise SO continues to lose good questions/answers, and new ones replace them. The Help states "We don't like to
lose great answers!". Thanks. - PerformanceDBA
(22) Can you provide reference to any of these "Standards"? Currently this is just a very well written personal opinion. -
Shane Courtrille
The edit in response to VoteCoffee does not answer their question. - Noumenon
I like plural table names instead of singular names. In my opinion (for example in Hibernate) an entity (which store a
row from table) should be singular but the table for it should be plural. - Nagy Attila
(3) I have read much of the standard materials, and I am fairly versed in relational database theory. I know the
arguments of both the singular and plural stance when it comes to naming relations, yet I, too, respectfully disagree
with the former. As in most cases, naming conventions should be more about consistency than dogmatism. Nobody
working with database queries is going to be confused about whether a relation can hold several tuples or not, just
because it's named in the singular or the plural. - Daniel Saner
(1) @Noumenon. Is this what you have not found: UserProductPurchase and UserProductPreference ? -
PerformanceDBA
(1) @ShaneCourtrille. This answer is for those who can tell the difference between a bus in New York city vs a bus in
China. And why the two buses are different. Explaining what a Standard is, to someone who argues against Standards,
is beyond the scope of Q&A in SO. You might feel better if you view the Answer as Convention (as per the original
Question). - PerformanceDBA
(1) @PerformanceDBA That is correct. I did not click through to the second PDF since the link text "Predicate vs Table
discussion" does not appear to be specific to this question. - Noumenon
(1) @PerformanceDBA this is a masterpiece compilation across multiple textbooks and work experience... thank you for
taking the time to share. I was wondering how you would recommend prefixing the name of a table that associates
other tables but has its own attributes. In my case, I am tabulating a subset of waterways that have a specific regulatory
classification as well as other land and asset features associated with the waterway. This table currently has five foreign
keys to these tables along with a dozen attributes we track. - JackedUpDBA
(1) @JackedUpDBA. if Predicate vs Table does not answer your question, write to me. - PerformanceDBA
This is factually incorrect: "sure sign of someone who has not read any of the standard materials and has no knowledge
of database theory". Well-educated individuals are able to recognize when something is a matter of taste. - Jonathan
B.
@JonathanB. Educated individuals know that Science is about reality; objective truth. It does not care about subjective
notions; or taste. Those who pervert science first make a truth subjective, then they reframe it as something that it is
not. They may redefine the term "fact", and propose that objective truth is taste. - PerformanceDBA

1

Relational table naming convention http://www.stackprinter.com/export?question=4702728&serv...

10 of 13 21-Aug-22, 19:52

[+20] [2011-01-15 23:25:06] Jonathan Leffler

There is no 'correct' about singular vs plural - it is mostly a matter of taste.

It depends in part on your focus. If you think of the table as a unit, it holds 'plurals' (because it holds
many rows - so a plural name is appropriate). If you think of the table name as identifying a row in a
table, you'll prefer 'singular'. This means your SQL will be thought of as working on one row from the
table. That's OK, though it is usually an oversimplification; SQL works on sets (more or less). However,
we can go with singular for the answers to this question.

1. Since you'll probably need a table 'user', another 'product', and the third to connect users to
products, then you need a table 'user_product'.

2. Since the description applies to a product, you would use 'product_description'. Unless each user
names each product for themselves...

3. The 'user_product' table is (or could be) an example of a table with a product ID and a user ID and
not much else. You name the two-attribute tables in the same general way: 'user_stuff'. Decorative
prefixes like 'rel_' don't really help. You'll see some people using 't_' in front of each table name,
for instance. That is not a lot of help.

When you say "and the third to connect users". Do you mean a third table? Why should I need a third table when
having a one to many relation (users have many products) ? Would you recommend using user_product instead of
UserProduct by the way? - Andreas
My answer is predicated on there being a table listing products that the system knows about. There should also be a
table listing the users the system knows about. And since more than one user can (under my hypothesis) be associated
with a particular product, then there is a third table that could be named 'user_product' (or 'product_user'). If you
really have just two tables, so each user's products are unique to that user and never used by anyone else, then (a) you
have an unusual scenario, and (b) you only need two tables - you don't need the 'product' table I hypothesized. -
Jonathan Leffler
Sorry, I should have used a better example than products. I meant it in a way that the product is unique to a user. So
with this cleared, i assume the description table should be "user_product_description" since it's also unique for the
user/product.. I know see what a horrible example i took with products :) Thank you - Andreas
@Andreas: it is often hard to choose good examples, and one of the problems is people's preconceptions about what a
product table would contain. However, given your clarification, then 'user', 'user_product', and
'user_product_description' seem appropriate as table names. - Jonathan Leffler

2

[+20] [2011-01-16 00:15:18] Ronnis

Singular vs. Plural: Pick one and stick with it.

Columns shouldn't be prefixed/suffixed/infixed or in anyway fixed with references to the fact that it is a
column. The same goes for tables. Don't name tables EMPLOYEE_T or TBL_EMPLOYEES because the
second it is replaced with a view, things get really confusing.

Don't embed type information in names, such as "vc_firstname" for varchar, or "flavour_enum". Also
don't embed constraints in column names, such as "department_fk" or "employee_pk".

Actually, the only good thing about *fixes I can think of, is that you can use reserved words like where_t,
tbl_order, user_vw. Of course, in those examples, using plural would have solved the issue :)

Don't name all keys "ID". Keys refering to the same thing, should have the same name in all tables. The
user id column could be called USER_ID in the user table and all tables referencing the user. The only
time it is renamed is when different users are playing different roles, such as Message(sender_user_id,
receiver_user_id). This really helps when dealing with larger queries.

Regarding CaSe:

Relational table naming convention http://www.stackprinter.com/export?question=4702728&serv...

11 of 13 21-Aug-22, 19:52

thisiswhatithinkofalllowercapscolumnnames.

ALLUPPERCAPSISNOTBETTERBECAUSEITFEELSLIKESOMEONEISSCREAMINGATME.

CamelCaseIsMarginallyBetterButItStillTakesTimeToParse.

i_recommend_sticking_with_lower_case_and_underscore

In general it is better to name "mapping tables" to match the relation it describes rather than the names
of the referenced tables. A user can have any number of relations to products: user_likes_product,
user_bought_product, user_wants_to_buy_product.

(6) I prefer looking at underscore. But I prefer typing camelCase. There is something about the underscore... no matter
how much I practice, I'm forced to stop and look at the keyboard. - Lord Tydus
@Ronnis, would you please elaborate on ""Don't name all keys "ID". Keys refering to the same thing, should have the
same name in all tables."" ? - Travis
@Travis, sure I could, but that entire paragraph is an elaboration? - Ronnis
I guess my question is about the benefits of naming a (non-differentiated role) synthetic primary key
{table_name}_id rather than just id, since the column will only ever be referred to with the table name prefixed as a
qualifier, e.g. table_name.id. For context, I'm operating in an ecosystem where join syntax of the form table_a
JOIN table_b ON table_b_id_column is not supported; I have to do table_a JOIN table_b ON
table_b.id_column = table_a.table_b_id_column. - Travis
For me this is about clarity and the logical data model. If I use a number sequence for USER_ID and COMPANY_ID,
some of those values will be the same of course. But the 123 from USER_ID is not the same as 123 from COMPANY_ID,
because their values are drawn from difference domains. That way it makes sense to name them differently. - Ronnis

3

[+4] [2011-01-15 23:27:09] amelvin

Plurals aren't bad as long as they are used consistently - but singular is my preference.

I would dispense with underscores unless you want to outline a many-to-many relationship; and use an
initial capital because it helps distinguish things in ORMs.

But there are many naming conventions, so if you want to use underscores that's OK as long as its done
consistently.

So:

User

UserProduct (it is a users products after all)

If only one user can have any product then

UserProductDescription

But if the product is shared by users:

ProductDescription

If you save your underscores for many-to-many relationships you can do something like:

UserProduct_Stuff

to form a M-to-M between UserProduct and Stuff - not sure from the question the exact nature of the
many-to-many required.

I like this, seems like a good way of doing it. The only thing I'm wondering about here is, since I "should" save the

Relational table naming convention http://www.stackprinter.com/export?question=4702728&serv...

12 of 13 21-Aug-22, 19:52

underscore for many to many, i "have" to use upper case naming of tables. I'm not sure why but somehow I've learned
that one shouldn't use that for table names, only for columns... I probably heard it from the same person that said
plural is wrong though. - Andreas
@Andreas You don't need to use upper case for tables, just capitalize the first letter of the distinct words. - amelvin

4

[+2] [2011-01-15 23:32:37] Ozzy

There is not more correct to use singular than plural form, where have you heard that? I would rather say
that plural form is more common for naming database tables...and in my opinion also more logic. The
table most often contain more than one row ;) In a conceptual model though the names of the entities are
often in singular.

About your question, if 'Product' and 'ProductDescription' are concepts with an identity (i.e. entities) in
your model I would simply call the tables 'Products' and 'ProductDescriptions'. For tables that are used in
order to implement a many-to-many relationship I most often use the naming convention "SideA2SideB",
for example "Student2Course".

5

Relational table naming convention http://www.stackprinter.com/export?question=4702728&serv...

13 of 13 21-Aug-22, 19:52

